Heating Jacket

Luck Design Company, Limited

Our goal

To create efficient pipe heating by:

- Preventing pipe clogging due to exhaust gas condensation
- ✓ Preventing gas condensation
- ✓ **Decreasing startup** time after cleaning

Where to use it

- Semiconductor/FPD manufacturing equipment and exhaust pipes
- Vacuum pump peripherals/ air purifying devices
- Gas supply piping

How we differentiate From other Companies(1)

Heating element structure

Other companies

Glass/SiO2 Yarn (braided)

Luck Design

Thermal resistance up to 800°C

- Short circuits and wire breaks are more likely to occur due to insulation degradation caused by heating
- Insufficient mechanical strength • and low reliability
- **narrow pitch** wiring becomes difficult

- High reliability and durability by double insulation structure, preventing insulation deterioration
- Narrow pitch wring possible

Cross section of the jacket heater

Cover cloth: Silicon coated glass cloth

How we differentiate From other Companies(2)

Incombustibility

How we differentiate from other Companies(3) **Constituent** Material

Heater Wire

- Ni-Cr wire with double insulation
- Thermal resistance up to 800°C

Cover cloth

- Silicon coated glass cloth
- Teflon-coated glass cloth

Internal insulation material

• Glass felt, etc.

clients

The jacket heater that we use at Luck Design, in comparison with rubber heater or heater used by other companies, is **better in insulation** and a more sustainable and energy saving option

- Heating power \rightarrow 40% lower
- Surface temperature is 40% lower $95^{\circ}C \rightarrow 55^{\circ}C$
- Reduction of air conditioning power consumption

Jacket heater Luck Design

How we differentiate from other Companies(5) High precision sewing technology

Laser Machine

Computerized cutting machine Industrial sewing machine

Applicable standard

2006/95/EC Low Voltage Directive EN60519-2 : 2006 Safety in electro heat installations

 \rightarrow Part 2 : Particular requirements for resistance heating equipment

1. Cadium and its compounds RoHS Directive (2002/95/EC) Threshold: 100 ppm

3. Lead and its compounds RoHS Directive (2002/95/EC) Threshold: 1000 ppm

4. Mercury and its compounds RoHS Directive (2002/95/EC) Threshold: 1000 ppm

5. Specified PBB family of brominated flame retardants RoHS Directive (2002/95/EC) Threshold: 1000 ppm

6. Specified PBDE family of brominated flame retardants RoHS Directive (2002/95/EC) Threshold: 1000 ppm

RoHS

2. Chromium VI compounds RoHS Directive (2002/95/EC) Threshold: 1000 ppm

Cleanroom Specifications

 (μm)

Cover Cloth

We are using materials that are less likely to generate particles

Characteristics of Materials Used (cover cloth)

Water resistant **Bend-resistant Cut-resistant**

The material used is heat-resistant and non-combustible, and meet Class 10 of the Clean Room specification

Sustainability In summary, by using our heating jacket, you can create a more sustainable manufacturing process as it can improve product yield and reduce material waste

Material specification

Effectiveness of our Jacket Heater (example1) Convergence of particles inside the chamber

Before installing jacket heater

*Counts all particles with a size of 0.2µm or larger

*Large particles with a size of 1µm or larger

Particle average: Before 10.9/wafer \Rightarrow After 2.6/wafer Particle average size: Before 1.1/wafer \Rightarrow After 0.5/wafer

After

Effectiveness of our Heating Jacket (example2) Convergence of particles inside the chamber

*Counts all particles with a size of 0.2µm or larger

*Large particles with a size of 1µm or larger

Particle average: Before 28.7/wafer \Rightarrow After 12.1/wafer Particle average size: Before 6.0/wafer \Rightarrow After 1.6/wafer

conclusion

C	Case1
С	Case2

The number of start-up attempts after cleaning to achieve

certain limit.

Effectiveness of heating jacket:

Before	after
4.2 times	1 time
5.2 times	3 times

The number of repeated start-ups until the particle count is below a

Temperature Control Panel

To be used together with heating Jacket

Standard type 10-PID control

Other Temperature Control Panel

■ 1PID, 7A MAX has a wide range of usage: For example, in the case of a 50A piping with a 0.125W/cm² and 20m, up to 4800W with 24A and 200V can be used with SB1 x 6 units.

- Excellent expandability, capable of being smart enabled
- Retrofitting: PC-monitor, touch-panel, and etc.
- Simple wiring, which means that it's easy for installation and the compensation wiring is short

Piping insulation Jacket Foam

Insulation material made of sponge that has a heat resistant up to 150 $^{\circ}$ C Easy to be installed on-the-site (scissors)

Improves workability: Compared to silicone rubber sponge, its density is about 1/40 and is lightweighted

Jacket Foam insulation performance

- performance.
- saving effect is superior.

Compared to silicone rubber insulation material, it has about 1.5 times the insulation

Compared to silicone rubber, the surface temperature also decreases, and the energy-

配管加熱時の保温ジャケット表面温度